HOW WE ‘KNOW’:
MAKING DISCOVERIES
IN MODERN PHYSICS

Lecture 4 Models
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e Bayes theorem recap - prior misspecification
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e Bayes theorem recap - prior misspecification
e Dark Matter

¢ Models and misspecification

e Model selection
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Bayes Theorem
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Bayes Theorem

¢ One of the notes about Bayes theorem is it allows us to explicitly include
our prior knowledge about something
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Bayes Theorem

¢ One of the notes about Bayes theorem is it allows us to explicitly include
our prior knowledge about something

e How does this affect the outcome if our prior knowledge is wrong or heavily
biased?
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Weighted coin - what if our prior is wrong?

— Prior knowledge
-—=Current knowledge

n_heads =0
n_toss =1

Probability weight is x

0.0 0.2 0.4 0.6 0.8 1.0
Coin Weight
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Weighted coin - what if our prior is wrong?

— Prior knowledge
-—=Current knowledge

Probability weight is x

I
n_heads = 71
n_toss = 11/

u————’
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Weighted coin - what if our prior is wrong?

" — Prior knowledge
-—=Current knowledge

Probability weight is x

n_heads = 66
n_toss = 111

0.0 0.2 0.4 0.6 0.8 1.0
Coin Weight
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Weighted coin - what if our prior is wrong?

" — Prior knowledge
-—=Current knowledge

With sufficient data, the wrong prior will tend to bias the estimate of the

parameter in question - better to have a uniform (uninformative) prior than a

biased one
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What makes up a galaxy?

Visible matter: gas, dust and stars (plus stellar remnants)
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What makes up a galaxy?

Visible matter: gas, dust and stars (plus stellar remnants)

Rotational velocity - function of ‘inertia’ of the galaxy. Galaxy has most of its
luminous mass in the center, and less mass at the edges.

Expect stars at the edge of the Galaxy to rotate more slowly
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What makes up a galaxy?

There is nothing new to be
discovered in physics now. All that
remains is more and more precise
measurement
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What makes up a galaxy?
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What makes up a galaxy?

many of our stars, perhaps a great
majority of them, may be dark
bodies
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What makes up a galaxy?

many of our stars, perhaps a great
majority of them, may be dark
bodies

Fritz Zwicky: motion of galaxies in the
Coma cluster suggests there is additional
‘hidden’ or ‘invisible’ mass
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Dark Matter - Discovery

Vera Rubin, Kent Ford and Ken Freeman: Observed the velocity of stars orbiting
the centre of spiral galaxies

zoollll—lTlTTlllll

Even when combining the velocity NGC 6503

you expect to observe from gas +
stars + dust, some mass is missing

100

—_—

Model is misspecified: easy to see
comparing observations and our
models

Vo (km s™)

Missing mass = ‘Dark Matter’ l@."
N

30

Radius (kpe)
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Dark Matter - Discovery

Vera Rubin, Kent Ford and Ken Freeman: Observed the velocity of stars orbiting

the centre of spiral galaxies
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Missing Physics

® Previous explanations for the
discrepancy had suggested
that the ‘missing’ dark matter
could be unseen gas (e.g.
neutral hydrogen) that does
not glow with visible light

M81/M82/NGC3077 VLA HIl mosaic

® disfavoured when radio
observations reveal
distribution of neutral
hydrogen in galaxies

® Some sort of object or

Yun et al. Nature 1934 378 530 substance that interacts only
via gravitational force
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BuIIt Iuster

Pink: gas Blue: calculated model of where the mass (Dark Matter + visible) is
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Dark Matter models

® There are now hundreds, if not
thousands, of models that propose
to explain what dark matter is
made of

® Famous: MACHOs vs. WIMPS

® Tiny black holes from the beginning
of the universe?

® Mysterious particles?

® Build a model, see if it ‘fits’ well
with all the observations, and use
the observations to ‘fine tune’ your
model R\

Supersymmetry
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Data vs. Model - Anscombe’s Quartet
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Data vs. Model - Anscombe’s Quartet

® All data has the same mean and (N o jo0%0%
variance o o O“ : 0@‘
® All fitted with the same model (a  * T

straight line) e T R
® All have the same correlation v .

coefficient
® How do we decide if the line is a o e | e
good representation of the data? - _.o°° -
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Physical or Empirical

® To estimate a parameter that tells us something about the universe (e.g.
from last time, the mass of each black hole in a black hole binary) we need a
model that we can fit to our data

® When the parameter is ‘just right’, it will reproduce our observed data well

® Physical models: parameters estimated are directly linked to a physical
quantity

® Empirical: parameters estimated are assumed to be a proxy for a physical
quantity
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Physical or Empirical

Sometimes an empirical or simplified model is preferable when our physical

understanding is not very good, or the process we are modelling is
exceptionally complex

Mass-Luminosity Plot
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Bad empirical model: We know the physics Less bad model: lots of complicated

of what is happening, and empirical formula things happening, and we can’t
does not accurately explain physics/get account for them, but still tells us
wrong answer something physically useful/get right
°Q answer
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Physical or Empirical

All models are wrong, but some models are useful - Cox
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When we have a model, we usually want to know how well it represents our
data (remember Anscombe’s quartet!)

AValues - Values =

Time Time Time

Underfitted Good Fit/Robust Overfitted

Goodness of fit alone CANNOT tell us which model we prefer (regardless of
what may be taught) - possible to overfit when optimising goodness of fit
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Model Selection - return to Occam’s Razor

General problem: we have two models to represent a phenomenon. Which is
the best representation?
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Model Selection - return to Occam’s Razor

General problem: we have two models to represent a phenomenon. Which is
the best representation?

y=ax+ b

y=cx*+dx+z
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Model Selection - return to Occam’s Razor

General problem: we have two models to represent a phenomenon. Which is
the best representation?

y=ax+ b

y=cx*+dx+z

Frequentist

® For each model, determine the best
fitting parameters (or region of
parameter space)

® Calculate the goodness of fit (e.qg.
maximum likelihood methods, chi-
square)

® Choose a metric for model selection
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Model Selection - return to Occam’s Razor

General problem: we have two models to represent a phenomenon. Which is
the best representation?

y=ax+ b

y=cx*+dx+z

Frequentist Bayesian

® For each model, determine the best ® Calculate the ratio
fitting parameters (or region of
parameter space)

® Calculate the goodness of fit (e.qg.
maximum likelihood methods, chi- Requires computing the posterior (see
square) last lecture), and having a prior

® Choose a metric for model selection expectation the model is true

P(observe this data given model 1)
P(observe this data given model 2)
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Model Selection - return to Occam’s Razor

General problem: we have two models to represent a phenomenon. Which is
the best representation?

y=ax+ b

y=cx*+dx+z

Frequentist Bayesian
® For each model, determine the best ® Calculate the ratio
fitting parameters (or region. 2~
\Y ' ‘
oarameter space) seva(a‘e P(observe tE!S data given mode: 1)
® Calculate the o 50\64 of fit (e.0. P(observe this data given model 2)
maxim: 35?‘37:\)0(:1 methods, chi- Requires computing the posterior (see
sq0cc? last lecture), and having a prior

® Choose a metric for model selection expectation the model is true
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Model Selection - return to Occam’s Razor

General problem: we have two models to represent a phenomenon. Which is
the best representation?

y=ax+ b

y=cx*+dx+z

Frequentist Bayesian

® For each model, determine the best ® Calculate the ratio
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maxim:sg B2550d methods, chi- Requires 931,0 119 the posterior (see

sQ 0<>"’,a I~ ooaV“A.e), and having a prior
® Choose a metric for model selection e~pectation the model is true
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Bayesian experiment design

® Dark matter detection in lab: design experiment to find
one particular type of Dark Matter

® Either DM exists or doesn’t - frequentist question!

® Design a better experiment?

Ground truth Data

@ Dr Fiona Panther | OzGrav-UWA | fiona.panther@uwa.edu.au



Bayesian experiment design

® Dark matter detection in lab: design experiment to find
one particular type of Dark Matter

® Either DM exists or doesn’t - frequentist question!

® Design a better experiment?

Experimental measurement
Ground truth Data
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Bayesian experiment design

® Dark matter detection in lab: design experiment to find
one particular type of Dark Matter

® Either DM exists or doesn’t - frequentist question!

® Design a better experiment?

Experimental measurement

Ground truth e Data
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Bayesian experiment design

® Dark matter detection in lab: design experiment to find
one particular type of Dark Matter

® Either DM exists or doesn’t - frequentist question!

® Design a better experiment?

Experimental measurement
Ground truth Data

Theory

@ Dr Fiona Panther | OzGrav-UWA | fiona.panther@uwa.edu.au



Bayesian experiment design

® Dark matter detection in lab: design experiment to find
one particular type of Dark Matter

® Either DM exists or doesn’t - frequentist question!

® Design a better experiment?

Experimental measurement
Ground truth Data

Measurement model

Theory
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Bayesian experiment design

® Dark matter detection in lab: design experiment to find
one particular type of Dark Matter

® Either DM exists or doesn’t - frequentist question!

® Design a better experiment?

Experimental measurement

Data

V...
.....
%
A Measurement model

Theory

Ground truth
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Cautionary tales and a view of the future

There are lots of egregious examples of model misspecification in science, but
subtle model misspecification is hard to find.

Trouble with Bayes theorem and frequentist methods: no inbuilt way to
prevent model misspecification, both depend on domain expertise
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Cautionary tales and a view of the future

There are lots of egregious examples of model misspecification in science, but
subtle model misspecification is hard to find.

Trouble with Bayes theorem and frequentist methods: no inbuilt way to
prevent model misspecification, both depend on domain expertise

e Next time - more real examples of the challenges and triumphs

@ Dr Fiona Panther | OzGrav-UWA | fiona.panther@uwa.edu.au



Cautionary tales and a view of the future

There are lots of egregious examples of model misspecification in science, but
subtle model misspecification is hard to find.

Trouble with Bayes theorem and frequentist methods: no inbuilt way to
prevent model misspecification, both depend on domain expertise

e Next time - more real examples of the challenges and triumphs
e How will we ‘know’ in the future - what is machine learning and can we trust
it
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